Scalable real-time classification of data streams with concept drift

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable real-time classification of data streams with concept drift

Inducing adaptive predictive models in real-time from high throughput data streams is one of the most challenging areas of Big Data Analytics. The fact that data streams may contain concept drifts (changes of the pattern encoded in the stream over time) and are unbounded, imposes unique challenges in comparison with predictive data mining from batch data. Several real-time predictive data strea...

متن کامل

Fast Adaptive Real-Time Classification for Data Streams with Concept Drift

An important application of Big Data Analytics is the realtime analysis of streaming data. Streaming data imposes unique challenges to data mining algorithms, such as concept drifts, the need to analyse the data on the fly due to unbounded data streams and scalable algorithms due to potentially high throughput of data. Real-time classification algorithms that are adaptive to concept drifts and ...

متن کامل

Learning from Data Streams with Concept Drift Learning from Data Streams with Concept Drift

SUMMARY Increasing access to large, nonstationary datasets and corresponding demands to analyze these data has led to the development of new online algorithms for performing machine learning on data streams. An important feature of many real-world data streams is " concept drii, " whereby the characteristics of the data can change arbitrarily over time. e presence of concept drii in a data stre...

متن کامل

Mining Data Streams with Concept Drift

Tutaj przychodzi karta pracy dyplomowej; oryginał wstawiamy do wersji dla archiwum PP, w pozostałych kopiach wstawiamy ksero.

متن کامل

Learning from Data Streams with Concept Drift

Increasing access to incredibly large, nonstationary datasets and corresponding demands to analyse these data has led to the development of new online algorithms for performing machine learning on data streams. An important feature of real-world data streams is " concept drift, " whereby the distributions underlying the data can change arbitrarily over time. The presence of concept drift in a d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Future Generation Computer Systems

سال: 2017

ISSN: 0167-739X

DOI: 10.1016/j.future.2017.03.026